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Metal Systems

Polymer Systems

Material

Material

A holistic portfolio

FORMIGA P 110 Velocis EOS P 396 EOS P 500 EOS P 770

EOS M 290 EOS M 400 EOS M 400-4 EOS M 300-4

Consulting

Software



The successful Additive Manufacturing Journey – 
Through Co-Engineering and Education
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Organizational 
maturity

(Education)

Application 
maturity
(Co-Engineering)



Certificate programs for role based enablement
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Lattice Structures in Medical
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Lattice Structures

AM Enables lattice structures with controlled 
geom etr y  a nd proper t ies , leading to:
 Improved O sseoingegra t ion
 Reduced stress  sh ielding
 Improved initial stability
 …

M a t er ia l

Topology

R ela t ive 
Densit y

 Strength
 Stiffness
 B iocompati

bility
 …

 Regular 
structures

 Irregular 
structures

 Transitional 
structures

 Pore size
 Strut size

Superposition
Pr oper t ies  
of  La t t ice 
st r uct ur e



Creating new material properties

7

Ashby map – Young‘s Modulus Ashby map – Strength

Metal 
Lattice

Metal 
Lattice
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Lattice Structures: Materials
Regular Lattice Structures

B rittle materials

Ductile materials
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Lattice Structures: Materials

Duct ile

B r it t le

Material &  
Process

Material &  
Process

 CP Ti
 Lattice

(DM LS)

 Ti-64
 Lattice

(DM LS)

 Pure AL
 Foam
  

 Ti-64 
 Lattice

(DM LS)

Material &  
Process

Material &  
Process

B in, et.al. - Effect of pore size and relative density on the mechanical properties of open cell 
aluminum foams

Krabusch – Untersuchung von SLM-Strukturen im Rahmen einer  mechanisch optimierten 
Osseointegrationsstrukur

Wauthle, R. – Industr ialization of Selective Laser  Melting for  the Production of 
Porous Titanium an Tantalum Implants

Wauthle, R. – Industr ialization of Selective Laser  Melting for  the Production of 
Porous Titanium an Tantalum Implants

Irregular Lattice Structures
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Deformable implants

Pr e - in t r a ope r a t iv e ly

Deformation can be done before or 
during the surgery, ensuring 
maximum flexibility

M a s s  Pr odu ce  M a lle a ble  Sh a pe

Amnovis CP Ti lattice is  highly ductile and can 
be deformed to match the patient anatomy

R e du ce d com ple x it y

All the advantages of patient matched 
implants without the complexity

Patent pending
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Lattice Structures: Topology

 B reakage starts at a certain level of stress depending on pore size and 
strut thickness

 Location of breakage depends on the „weakest“ strut

 Orientation of the breakage plane determines densification:

 Horizontal plane: Densification &  functionality may be ensured 
through tangled struts

 Diagonal plane: No densification &  no functionality

B reakage behavior of a regular structure

 B reakage starts at different levels of stress depending on bandwidth of 
pore size and strut thickness

 Struts with the highest stress level start to break first (not necessarily 
the smallest struts):

 B reakage of struts in different locations within the lattice (no 
breakage plane)

 Densification &  functionality may be ensured through tangled 
struts

B reakage behavior of a irregular structure

Breakage behavior depends on the properties of the material



Source: Altair, https://altair.com/blog/articles/The-Implant-Boom-It-s-Now-Hip-to-Replace-Your-Hip 12

Topology Optimized hip stem

AM offers a lot more possibilities than what 
today is leveraged in medical devices

R ough sur fa ce

B etter initial stability

M a t ch  s t i f f n e s s  of  bon e

Topology optimized using lattice 
structures to mimic the stiffness 
variations in a femur



13

Lattice Structures: Relative Density

 The relative density of a lattice 
determines vastly the mechanical 
properties

 The relative density depends on 
the as built strut thickness, 
cell/pore size (and lattice type)



Lattice Structures: Relative Density
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Gibson &  Ashby-Model

⁄𝐸𝐸∗ 𝐸𝐸𝑠𝑠 = 𝐶𝐶 ⁄𝜌𝜌∗ 𝜌𝜌𝑠𝑠 2 = 𝐶𝐶 1 − 𝑃𝑃 2  
    
    (Polynomial of the type of  𝑦𝑦 = 𝑎𝑎𝑥𝑥𝑛𝑛)

* : … of latticestructure
s: … of solid

Example of an irregular lattice structure (Ti64)

Specim en

r el.  Den sity

E* /E
S

⁄𝐸𝐸∗ 𝐸𝐸𝑠𝑠 = 0,2055 ⁄𝜌𝜌∗ 𝜌𝜌𝑠𝑠 1,8395 Es = 114 Gpa
ρs = 4,41 g/cm³

rel. Density
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Lattice Structures: Relative Density



Exposure Strategies for lattice 
structures
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Low build rate due to inefficient laser movements
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 Simulated in Ti64, 60µm layer thickness

 100 Cylinders with diamond shaped unit cell

 Strut thickness of 0.4mm, 

Efficiency gains – lattice hatch exposure

Build Time - 100 lattice cylinders

Build time job [min] Build time reduction [%]

EOS_DirectPart 541

Optimized lattice 
hatch exposure 180 -66,7%



Exposure Strategies
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Which exposure type to use always depends on the lattice structures 

Lattice 
structure

Contour 
exposure

Hatch 
exposure

Contour and 
Hatch exposure

Strut thickness
≤ 300 µm

Strut thickness
 > 300 µm

Strut thickness
> 300 µm

Complexity



Exposure Strategies
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Contour exposure

 Very fast
 No jump
Use size of melt pool!

 Multiple contours possible
 No up- and downskin
 Adjust design in CAD to avoid need of Global Beam Offset

Apply negative Contour Beam Offset
GBO + CBO = 0
Disable Edges

B eam

Melt pool
Diameter

as designed

Diameter
as built

y

x



20

Exposure Strategies
Amount of Vectors

Diameter: 250µm
#  Vectors: 100

Diameter: 250µm
#  Vectors: 6

Time to scan: Shorter
Resulting Diameter: Smaller

Time to scan: Longer
Resulting Diameter: B igger



Case Studies
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Digital foams
The world’s most accurate custom orthotic

Aetrex  Custom  3D Pr inted 
O r thot ic
 Complete foot data converted into 

complete product – superior 
product

 Multiple layers of foam combined in 
one

 Digital Foam – truly mass 
customized

 Production on demand and local 
for local

 No inventory, no risk, low cost



Comfort

PerformanceSafety

Types of Foam



Stress-Strain Results For Protective Foam

Overall TPU has a small strain-rate dependency relative to other polymers

Lattice 1

Lattice 2

Lattice 3

Lattice 4
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Stacked PLIF Cages
Printed with EOS M 290 using 
EOS Titanium 64 Grade 23 and 40µm process

• Support-free stacked PLIF cages
• High fatigue properties without HIP
• 595 MPa fatigue strength for 10 Million 

cycles
• Voronoi and Gyroid lattice integrated
• 540 PLIF cages per job
• Build time 84 hours or 9,3 mins per cage
• Built on an EOS M 290



Mechanical properties change 
through process parameters
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EOS SMART Parameter  - inver t  your 
workflow

process test optimize

(1) Specify  
m a ter ia l 

proper t ies  to 
achieve

(2) Get opt im ized 
pa ra m eter s  for 

highest build rates

(3) Increa se 
produ ct ivity
during build 

process



Select your machine /
material configuration

Select quality 
constraints

View achieved quality criteria incl. confidence
Get optimized build parameters

EOS SMART Parameter  - easy to use MVP



Multi Material printing
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Fidentis (Robotic arm)

FIDENTIS |  Automated production of top quality dentures

https://www.fidentis.de/


Additive Minds
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M a chine Ca pa bility  Stu dy
effort, time and cost can be reduced 

with Additive Minds support for

OQ

Operational 
Qualification

PQ

Performance 
Qualification

Performed by: Customer
Supported by: EOS Additive Minds

Factory 
Acceptance Test

Installation 
Qualification

Qualified
Production

Performed by: EOS

FAT IQ

Proven Qualification Strategy for Serial Production

Regulatory support

Fastest time to market

Minimize the risk



Davy Orye
Head of Additive Minds EMEA, EOS GmbH

Thank you!
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